
Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 1

UNIT-5

Back tracking: General method, N-Queens problem, Sum of subsets, Graph

colouring problem.

Branch and bound: General method, Least cost (LC) search, 0/1 Knapsack

problem, Travelling salesperson problem.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 2

1. BACKTRACKING –General Method

 Backtracking is an algorithmic technique whose goal is to use brute force to find all

solutions to a problem.

 It entails gradually compiling a set of all possible solutions. Because a problem will have

constraints, solutions that do not meet them will be removed.

 It finds a solution by building a solution step by step, increasing levels over time,

using recursive calling.

 A search tree known as the state-space tree is used to find these solutions. Each branch in

a state-space tree represents a variable, and each level represents a solution.

 A backtracking algorithm uses the depth-first search method.

 When the algorithm begins to explore the solutions, the abounding function is applied so

that the algorithm can determine whether the proposed solution satisfies the constraints.

 If it does, it will keep looking. If it does not, the branch is removed, and the algorithm

returns to the previous level.

State-Space Tree

A space state tree is a tree that represents all of the possible states of the problem, from the root

as an initial state to the leaf as a terminal state.

https://www.simplilearn.com/tutorials/data-structure-tutorial/recursive-algorithm
https://www.simplilearn.com/tutorials/data-structure-tutorial/dfs-algorithm

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 3

 Backtracking is used to solve problem in which a sequence of objects is chosen from a

specified set so that the sequence satisfies some criterion.

 The desired solution is expressed as an n-tuple (x1, , xn) where each xi Є S, S being

a finite set.

 The solution is based on finding one or more vectors that maximize, minimize, or satisfy

a criterion function P (x1…. xn). Form a solution and check at every step if this has any

chance of success. If the solution at any point seems not promising, ignore it.

 All solutions require a set of constraints divided into two categories: explicit and implicit

constraints.

 Definition 1: Explicit constraints are rules that restrict each xi to take on values only

from a given set. Explicit constraints depend on the particular instance I of problem being

solved. All tuples that satisfy the explicit constraints define a possible solution space for

I.

 Definition 2: Implicit constraints are rules that determine which of the tuples in the

solution space of I satisfy the criterion function. Thus, implicit constraints describe the

way in which the xi’s must relate to each other.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 4

2. N-Queens Problem

 The N Queen is the problem of placing N chess queens on an N×N chessboard so that

no two queens attack each other.

 For example, the following is a solution for the 4 Queen problems.

 Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8

chessboard so that no two “attack”, that is, no two of them are on the same row, column,

or diagonal.

 All solutions to the 8-queens problem can be represented as 8-tuples (x1, , x8),

where xi is the column of the ith row where the ith queen is placed.

 The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 < i < 8.

Therefore the solution space consists of 88 8-tuples. The implicit constraints for this

problem are that no two xi’s can be the same (i.e., all queens must be on different

columns) and no two queens can be on the same diagonal.

 This realization reduces the size of the solution space from 88 tuples to 8! Tuples.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 5

 Figure: One solution of 8-queens problem

 Algorithm: Can a new queen be placed

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 6

Algorithm: All solutions to the n-queens problem

4 – Queens Problem:

 Let us see how backtracking works on the 4-queens problem. We start with the root node

as the only live node.

 This becomes the E-node. We generate one child. Let us assume that the children are

generated in ascending order.

 Let us assume that the children are generated in ascending order. Thus node number 2 of

figure is generated and the path is now (1). This corresponds to placing queen 1 on

column 1. Node 2 becomes the E-node.

 Node 3 is generated and immediately killed. The next node generated is node 8 and the

path becomes (1, 3). Node 8 becomes the E-node.

 However, it gets killed as all its children represent board configurations that cannot lead

to an answer node.

We backtrack to node 2 and generate another child, node 13. The path is now (1, 4). The board

configurations as backtracking proceeds is as follows:

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 7

Figure: Example of a backtrack solution to the 4-queensproblem

Figure: Tree organizationof the 4-queens solution space.Nodesare

numbered as in depth first search.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 8

 Figure: Portion of the state space tree for 4-queens problem during backtracking

3. Sum of Subsets

Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets of wi

whose sums are ‘m’.

All solutions are k-tuples, 1 ≤ k ≤ n.

Explicit constraints:

 xi Є {j | j is an integer and 1 ≤ j ≤ n}.

Implicit constraints:

No two xi can be the same.

The sum of the corresponding wi’s be m.

 xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple instances of the same

subset (for example, (1, 2, 4) and (1, 4, 2) represent the same subset).

A better formulation of the problem is where the solution subset is represented by an n-tuple (x1,

. , xn) such that xi Є {0, 1}.

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1). For both the above

formulations, the solution space is 2n distinct tuples.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 9

Algorithm: Recursive Backtrack algorithm for sum of subsets problem

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are (11,

13, 7) and (24, 7).

The following figure shows a possible tree organization for two possible formulations of the

solution space for the case n = 4.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 10

Figure: A possible solution space organization for the sum of subsets

problem. Nodes are numbered as in breadth-first search

Figure: Another possible organization for the sum of subsets problems.

Nodes are numbered as in D-search

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 11

4. Graph Coloring

 Let G be a graph and m be a given positive integer.

 We want to discover whether the nodes of G can be colored in such a way that no two

adjacent nodes have the same color, yet only m colors are used.

 This is termed the m-colorabiltiy decision problem.

 The m-colorability optimization problem asks for the smallest integer m for which the

graph G can be colored.

 Given any map, if the regions are to be colored in such a way that no two adjacent

regions have the same color, only four colors are needed.

 For many years it was known that five colors were sufficient to color any map, but no

map that required more than four colors had ever been found.

 After several hundred years, this problem was solved by a group of mathematicians with

the help of a computer.

 They showed that in fact four colors are sufficient for planar graphs.

 The function m-coloring will begin by first assigning the graph to its adjacency matrix,

setting the array x [] to zero.

 The colors are represented by the integers 1, 2, . . . , m and the solutions are given by the

n-tuple (x1, x2, . . ., xn), where xi is the color of node i.

 A recursive backtracking algorithm for graph coloring is carried out by invoking the

statement mcoloring(1);

Algorithm mcoloring (k)

// This algorithm was formed using the recursive backtracking schema. The graph is

// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of

// 1, 2, , m to the vertices of the graph such that adjacent vertices are assigned

// distinct integers are printed. k is the index of the next vertex to color.

{

repeat

{ // Generate all legal assignments for x[k].

NextValue (k); // Assign to x [k] a legal color. If (x [k] = 0) then return; // No new color possible

If (k = n) then // at most m colors have been

// used to color the n vertices.

write (x [1: n]);

else mcoloring (k+1);

} until (false);

}

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 12

Algorithm NextValue (k)

// x [1] , x [k-1] have been assigned integer values in the range [1, m] such that

// adjacent vertices have distinct integers. A value for x [k] is determined in the range

// [0, m].x[k] is assigned the next highest numbered color while maintaining distinctness

// from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0.

{

repeat

{

x [k]: = (x [k] +1) mod (m+1) // Next highest color.

If (x [k] = 0) then return; // All colors have been used for j := 1 to n do

{ // check if this color is distinct from adjacent colors if ((G [k, j] 0) and (x [k] = x [j]))

// If (k, j) is and edge and if adj. vertices have the same color. then break;

}

if (j = n+1) then return; // New color found

} until (false); // Otherwise try to find another color.

}

Figure: Example of Graph coloring Problem

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 13

Figure: A node graph and all possible 3-colours

5. Branch and bound – General Method

 Branch and Bound is another method to systematically search a solution space.

 Just like backtracking, we will use bounding functions to avoid generating sub trees that

do not contain an answer node.

 However branch and Bound differs from backtracking in two important manners:

1. It has a branching function, which can be a depth first search, breadth first search or based on

bounding function.

2. It has a bounding function, which goes far beyond the feasibility test as a mean to prune

efficiently the search tree.

 Branch and Bound refers to all state space search methods in which all children of the E-

node are generated before any other live node becomes the E-node.

Branch and Bound is the generalization of both graph search strategies, BFS and Dsearch.

 A BFS like state space search is called as FIFO (First in first out) search as the list of live

nodes in a first in first out list (or queue).

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 14

 A D search like state space search is called as LIFO (Last in first out) search as the list

of live nodes in a last in first out (or stack).

 Definition 1: Live node is a node that has been generated but whose children have

not yet been generated.

 Definition 2: E-node is a live node whose children are currently being explored.

In other words, an E-node is a node currently being expanded.

 Definition 3: Dead node is a generated node that is not to be expanded or explored

any further. All children of a dead node have already been expanded.

 Definition 4: Branch-an-bound refers to all state space search methods in which

all children of an E-node are generated before any other live node can become the

E-node.

6. Lease-Cost Search (LC Search)

 In both LIFO and FIFO Branch and Bound the selection rules for the next E-node in rigid

and blind. The selection rule for the next E-node does not give any preference to a node

that has a very good chance of getting the search to an answer node quickly.

 The search for an answer node can be speeded by using an “intelligent” ranking) for live

nodes. The next E-node is selected on the basis of this rankingfunction c(function. The

node x is assigned a rank using:

c(x) = f(h(x)) + g(x)

where, c(x) is the cost of x.

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing function.

g (x) is an estimate of the additional effort needed to reach an answer node from x

 A search strategy that uses a cost function c(x) = f(h(x) + g(x) to select the next E-node would

always choose for its next E-node a live node with least LC–search (Least Cost search).

 BFS and D-search are special cases of LC-search. If g(x) = 0 and f(h(x)) = level of node

x, then an LC search generates nodes by levels. This is eventually the same as a BFS. If

f(h(x)) = 0 and essentially a D-search.

 An LC-search coupled with bounding functions is called an LC-branch and bound search

We associate a cost c(x) with each node x in the state space tree. It is not possible to

easily compute the function c(x). So we compute a estimate c(x) of c(x).

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 15

Algorithm: LC Search

7. 0/1 Knapsack Problem

To use the branch-and-bound technique to solve any problem, it is first necessary to conceive of

a state space tree for the problem. We have already seen two possible state space tree

organizations for the knapsack problem. Knapsack problem is a maximization problem.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 16

Algorithm: Function u(.) for knapsack problem

LC Branch-and-Bound Solution

 Consider the instance: M = 15, n = 4, (P1, P2, P3, P4) = (10, 10, 12, 18) and (w1, w2, w3,

w4) = (2, 4, 6, 9).

 0/1 knapsack problem can be solved by using branch and bound technique.

 In this problem we will calculate lower bound and upper bound for each node. Place first

item in knapsack. Remaining weight of knapsack is 15 – 2 = 13.

 Place next item w2 in knapsack and the remaining weight of knapsack is 13 – 4 = 9.

 Place next item w3 in knapsack then the remaining weight of knapsack is 9 – 6 = 3.

 No fractions are allowed in calculation of upper bound so w4 cannot be placed in

knapsack. Profit = P1 + P2 + P3 = 10 + 10 + 12 So,

Upper bound = 32.

To calculate lower bound we can place w4 in knapsack since fractions are allowed in

calculation of lower bound. Lower bound = 10 + 10 + 12 + (3/9 X 18) = 32 + 6 = 38.

 Knapsack problem is maximization problem but branch and bound technique is

applicable for only minimization problems. In order to convert maximization problem

into minimization problem we have to take negative sign for upper bound and lower

bound.

 Therefore, Upper bound (U) = -32

 Lower bound (L) = -38

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 17

Figure: LC Branch-and-Bound Tree

8. Travelling Sales Person Problem

 By using dynamic programming algorithm we can solve the problem with time

complexity of O(n22n) for worst case.

 This can be solved by branch and bound technique using efficient bounding

function.

 The time complexity of traveling sale person problem using LC branch and bound

is O(n22n) which shows that there is no change or reduction of complexity than

previous method.

 We start at a particular node and visit all nodes exactly once and come back to

initial node with minimum cost.

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 18

Figure: State space tree for travelling sales person problem

Example:

Figure: State space tree generated by procedure LCBB

Prepared by Mrs. B.Rajani & Mrs.C.Jyothsna DEPARTMENT OFCSE 19

Figure: Reduced cost matrices corresponding to nodes

	State-Space Tree

